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Fig. 1. CPU time per MD time step 
as a function of matrix dimension 
using diagonalization of the Ham-
iltonian matrix, dense and sparse 
matrix implementations of SP2 
purification, and the recursive 
expansion of the Fermi operator to 
calculate the density matrix.

Interatomic bonding in organic molecular crystals involves short-
range, angularly dependent, intramolecular covalent bonds, 

medium-range van der Waals bonding, and long-range electrostatic 
interactions that arise from atomic partial charges. A predictive 
model for the structure and chemistry (i.e., the making and breaking 
of covalent bonds) of molecular crystals must describe all of these 
interactions, and their interdependencies, with physical rigor while 
ensuring computational tractability.

The selection of a mathematical model for interatomic bonding in 
materials typically involves a compromise between accuracy and 
computational speed. For example, ab initio quantum mechanical 
methods based on the self-consistent field or density functional 
theories are extremely accurate but computationally very expensive. 
Furthermore, the computational cost of these methods usually scales 
with the cube of the number of atoms, O(N3), making large-scale, 
long duration molecular dynamics (MD) simulations impossible. 
Parallel implementations of empirical interatomic potentials facilitate 
long duration MD simulations with many millions of atoms [1], 
but the ability of empirical potentials to describe a given material 
with high fidelity is often questionable. Furthermore, empirical 

potentials tend to exhibit poor transferability 
to structures that differ from those employed 
in their parameterization.

In response to the limitations inherent to 
these two extremes, we have developed an 
O(N) formalism and a supporting code 
that aims to strike a compromise between 
computational speed and physical accuracy. 
While at first it may seem strange to wish 
to compromise on the physical accuracy of 
an interatomic potential, a formalism that 
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is limited severely in the number of atoms that can be employed in 
a simulation will inevitably lead to errors associated with finite size 
effects. In many situations, errors originating from finite size effects 
can be more severe than those originating from approximations made 
during the construction of the interatomic potential.

We have generated a set of interatomic potentials for hydrocarbons 
based on the self-consistent charge transfer tight-binding (SCC-TB) 
approximation to density functional theory [2,3]. The SCC-TB 
formalism captures naturally the formation of covalent bonds and 
the transfer of charge between species of different electronegativity. 
The SCC-TB method is explicitly quantum mechanical since we 
construct and solve a time-independent SchrÖdinger equation for 
a system of interacting, atom-centered valence electrons, but the 
elements of the Hamiltonian matrix are parameterized rather than 
computed exactly. Semi-empirical potentials such as those based 
on tight-binding tend to show better transferability than empirical 
potentials owing to their more rigorous theoretical underpinning. 
They are also orders of magnitude faster than ab initio methods since 
many difficult-to-calculate terms are approximated and parameterized 
[4].

Our SCC-TB formalism is expressed in a minimal basis of an 
orthogonal set of real free-atom-like orbitals. The non-spin polarized 
SCC-TB Hamiltonian, H, is a sum of a Slater-Koster Hamiltonian 
that describes the formation of covalent bonds, H0, and the 
electrostatic potential generated by partial charges, qi, on each atom,
                                
 
where i and j label atoms, α and β label orbitals, s, px, py, pz, etc., γii 
is the Hubbard ‘U’ for species i, and γij = 1/Rij, where Rij is the scalar 
distance between atoms i and j. The total energy is then

                     Etotal = 2tr[rH] -    ∑gij qi qj +Epair

where ρ is the density matrix calculated from H and the electronic 
occupation. The SCC-TB equations must be solved self-consistently 
since the partial charges on which the Hamiltonian depends are 
obtained from the density matrix, i.e.,  , 
where ρ0 is the density matrix for isolated atoms. The last term in the 
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recursive expansion of the Fermi operator method 
described in [8] allows for the calculation of a finite 
temperature density matrix with O(N) cost for 
sparse molecular systems. It is clear from Fig. 1 that 
the recursive expansion of the Fermi operator is 
somewhere between diagonalization and purification 
in terms of speed, and that linear scaling is readily 
achievable.

Like SP2 purification, the Fermi operator expansion 
algorithm depends only on O(N 3) dense matrix-
matrix multiplications. This leaves LATTE with 
a very well defined computational bottleneck upon which we can 
concentrate our efforts. Thus, a key factor in the performance 
of LATTE is the question of how fast one can multiply square 
matrices. In addition to exploiting the sparsity of density matrices 
for molecular materials, we have found that the utilization of 
hybrid computational architectures is a promising route toward 
maximizing the speed of matrix-matrix multiplications. In Fig.2 
we show computational time as a function of matrix dimension 
for the double-precision general matrix multiply (DGEMM) 
algorithm on the Opteron central processing units (CPU) and IBM 
Cell Broadband Engine (Cell BE) chips on LANL’s Roadrunner 
supercomputer. It is evident that the use of special computational 
architectures for time-consuming computational operations 
offers very significant performance gains. In parallel to this work 
on Roadrunner, we are actively pursuing the use of commodity 
graphics cards as computational 
accelerators such that huge 
performance boosts can be 
obtained even on off-the-shelf 
desktop workstations. Of 
particular note in this regard 
is the stability of LATTE’s 
algorithms when executed in 
single-precision arithmetic.

A judicious selection of a 
physical model for interatomic 

Fig 2. Time to compute a dense 
matrix-matrix multiplication 
using the DGEMM algorithm as a 
function of matrix dimension on 
the Opteron and Cell BE chips on 
Roadrunner.

expression for the total energy, Epair, is a sum of pair potentials that 
are used to provide short-range repulsion and -1/R6 van der Waals 
interactions at long range.

In contrast to ab initio electronic structure methods, the construction 
of the Hamiltonian in SCC-TB is computationally very cheap. 
Instead, the bottleneck in SCC-TB calculations is the O(N3) 
computation of the density matrix. In the Los Alamos Transferable 
Tight-binding for Energetics (LATTE) code, we have implemented 
a number of methods for rapid, O(N) calculations of the density 
matrix [5].

The most straightforward method for calculating the density 
matrix involves the diagonalization of the Hamiltonian [6]. While 
this method is simple to implement and enables a finite electron 
temperature to be easily incorporated, it is unsuited to calculations 
including large numbers of atoms because of O(N3) scaling (see 
Fig. 1). We find that Niklasson’s second-order spectral projection 
(SP2) density matrix purification method is by far the most efficient 
method for the computation of the density matrix for large systems 
[7]. The starting point for SP2 purification is a remapping of all 
eigenvalues of the Hamiltonian into the interval [0,1]. This matrix 
is purified such that the eigenvalues of occupied states are projected 
toward 1 and those of unoccupied states toward zero until an 
idempotent density matrix is obtained. The purification operations 
require only one O(N3) matrix-matrix multiplication per iteration. 
However, for molecular systems we take advantage of the linear 
increase in the number of non-zero matrix elements with the number 
of molecules to achieve O(N) matrix-matrix multiplications. Figure 
1 illustrates clearly the tremendous speed-up that density matrix 
purification offers with respect to diagonalization for large systems 
even in dense matrix form, while a sparse matrix implementation 
yields O(N) performance.

The density matrix obtained via purification corresponds to zero 
electronic temperature. This may lead to numerical instabilities 
during a MD simulation if eigenvalues cross the chemical potential. 
It is usually desirable to smooth these electronic transitions through 
the introduction of a finite electronic temperature. We find that the 
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bonding in molecular 
materials coupled to advanced 
algorithms, developments in 
applied mathematics, and novel 
computational architectures 
enabled us to design and run 
very large-scale quantum MD 
simulations. These simulations 
are currently being applied to 
the study of the chemistry under 
extreme conditions.


